The unprecedented rise in the adoption of artificial intelligence techniques in many contexts is concomitant with shortcomings of such technology with respect to robustness, interpretability, usability, and trustworthiness. Crowd computing offers a viable means to engage a large number of human participants in data related tasks and in user studies. In the context of overcoming the computational and interactional challenges facing the current generation of AI systems, recent work has shown how crowd computing can be leveraged to either debug noisy training data in machine learning systems, understand which machine learning models are more congruent to human understanding in particular tasks, or to advance our understanding of how AI systems can influence human behavior.
To receive announcements of upcoming presentations and events organised by TAFF, check out the registration page.